

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	600			
$R_{DS(on)}\left(\Omega\right)$	V _{GS} = 10 V	0.40		
Q _g (Max.) (nC)	120			
Q _{gs} (nC)	29			
Q _{gd} (nC)	48			
Configuration	Single			

FEATURES

- · Ultra Low Gate Charge
- · Reduced Gate Drive Requirement
- Enhanced 30 V V_{GS} Rating
- Reduced C_{iss}, C_{oss}, C_{rss}
- · Isolated Central Mounting Hole
- Dynamic dV/dt Rated
- · Repetitive Avalanche Rated
- Lead (Pb)-free Available

DESCRIPTION

This new series of low charge Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing advanced Power MOSFETs technology the device improvements allow for reduced gate drive requirements, faster switching speeds and increased total system savings. These device improvements combined with the proven ruggedness and reliability of Power MOSFETs offer the designer a new standart in power transistors for switching applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting

ORDERING INFORMATION	
Package	TO-247
Load (Dk) from	IRFPC60LCPbF
Lead (Pb)-free	SiHFPC60LC-E3
SnPb	IRFPC60LC
SIIFU	SiHFPC60LC

PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V_{DS}	600	V	
Gate-Source Voltage	V_{GS}	± 30	1 v		
Continuous Drain Current	V_{GS} at 10 V $T_C = 25 ^{\circ}C$	1-	16	А	
	V_{GS} at 10 V $T_C = 100 ^{\circ}C$	I _D	10		
Pulsed Drain Current ^a	I _{DM}	64			
Linear Derating Factor			2.2	W/°C	
Single Pulse Avalanche Energy ^b		E _{AS}	1000	mJ	
Repetitive Avalanche Current ^a	I _{AR}	16	А		
Repetitive Avalanche Energy ^a	E _{AR}	28	mJ		
Maximum Power Dissipation	T _C = 25 °C	P_{D}	280	W	
Peak Diode Recovery dV/dtc	dV/dt	3.0	V/ns		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)	for 10 s		300 ^d		
Mounting Torque	6-32 or M3 screw		10	lbf ⋅ in	
	6-3∠ OF IVI3 SCIEW		1.1	N · m	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = 25 V, starting T_J = 25 °C, L = 7.2 μ H, R_G = 25 Ω , I_{AS} = 16 A (see fig. 12).
- c. $I_{SD} \le 16$ A, $dI/dt \le 140$ A/ μ s, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C.
- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRFPC60LC, SiHFPC60LC

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	R _{thJA}	-	40	
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24	-	°C/W
Maximum Junction-to-Case (Drain)	R _{thJC}	-	0.45	

PARAMETER	SYMBOL	TES	TEST CONDITIONS		TYP.	MAX.	UNIT
Static				•			,
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		600	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	Reference to 25 °C, I _D = 1 mA		0.63	-	V/°C
Gate-Source Threshold Voltage	$V_{GS(th)}$	V _{DS} =	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		-	4.0	V
Gate-Source Leakage	I_{GSS}		V _{GS} = ± 20 V		-	± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}		$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 \text{ °C}$		-	25 250	μΑ
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 9.6 A ^b	-	-	0.40	Ω
Forward Transconductance	9 _{fs}	V _{DS} :	= 50 V, I _D = 9.6 A	11	-	-	S
Dynamic							•
Input Capacitance	C _{iss}	V _{GS} = 0 V,		-	3500	-	pF
Output Capacitance	C _{oss}	1	$V_{DS} = 25 V$		400	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.0 MHz, see fig. 5		-	39	-	
Total Gate Charge	Qg			-	-	120	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$I_D = 16 \text{ A}, V_{DS} = 360 \text{ V},$ see fig. 6 and 13^b	-	-	29	nC
Gate-Drain Charge	Q _{gd}		-	-	48	1	
Turn-On Delay Time	t _{d(on)}		V _{DD} = 300 V, I _D = 16 A,		17	-	ns ns
Rise Time	t _r	V _{DD} =			57	-	
Turn-Off Delay Time	t _{d(off)}	$R_G = 4.3 \Omega$, $R_D = 18 \Omega$, see fig. 10 ^b		-	43	-	
Fall Time	t _f			-	38	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") from package and center of die contact		-	5.0	-	
Internal Source Inductance	L _S			-	13	-	- nH
Drain-Source Body Diode Characteristic	s			•	<u>'</u>	•	,
Continuous Source-Drain Diode Current	Is	MOSFET sym	MOSFET symbol showing the		-	16	- A
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	64	
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 16 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$		-	-	1.8	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 16 A, dl/dt = 100 A/μs		-	650	980	ns
Body Diode Reverse Recovery Charge	Q_{rr}				6.0	9.0	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	r n-on is dominated by L_S and L_D)			_D)	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

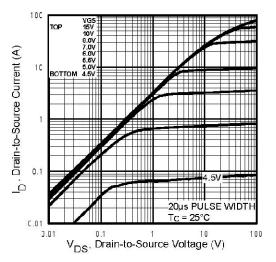


Fig. 1 - Typical Output Characteristics, T_C = 25 °C



Fig. 2 -Typical Output Characteristics, $T_C = 150 \, ^{\circ}C$

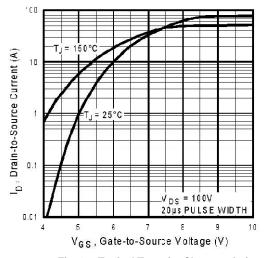


Fig. 3 - Typical Transfer Characteristics

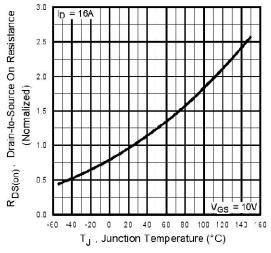


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

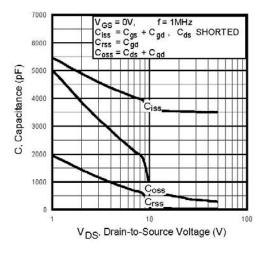


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

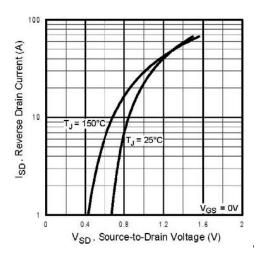


Fig. 7 - Typical Source-Drain Diode Forward Voltage

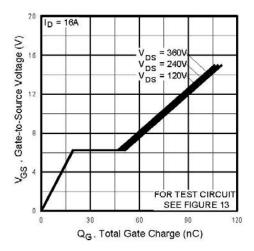


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

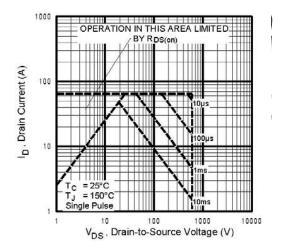


Fig. 8 - Maximum Safe Operating Area

Fig. 9 - Maximum Drain Current vs. Case Temperature

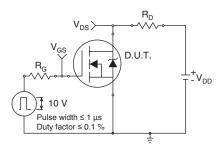


Fig. 10a - Switching Time Test Circuit

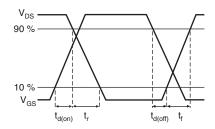


Fig. 10b - Switching Time Waveforms

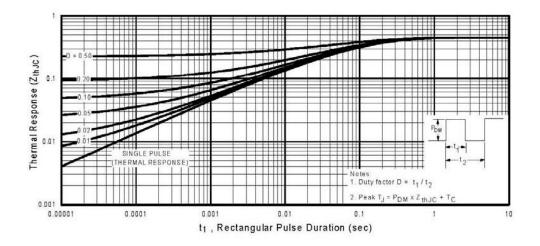


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case



Fig. 12a - Unclamped Inductive Test Circuit

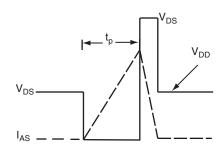


Fig. 12b - Unclamped Inductive Waveforms

Vishay Siliconix

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

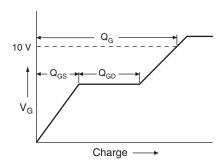


Fig. 13a - Basic Gate Charge Waveform

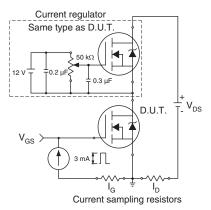
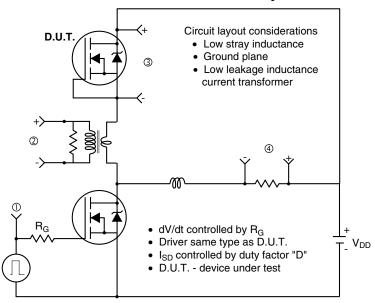
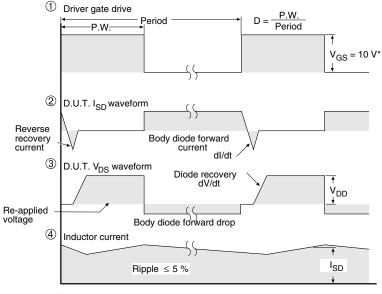




Fig. 13b - Gate Charge Test

Peak Diode Recovery dV/dt Test Circuit

* $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91244.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com